首页> 外文OA文献 >Nanomechanical Resonators and Their Applications in Biological/Chemical Detection: Nanomechanics Principles
【2h】

Nanomechanical Resonators and Their Applications in Biological/Chemical Detection: Nanomechanics Principles

机译:纳米机械谐振器及其在生物/化学中的应用   检测:纳米力学原理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent advances in nanotechnology have led to the development ofnano-electro-mechanical systems (NEMS) such as nanomechanical resonators, whichhave recently received significant attention from the scientific community.This has not only been for their capability for the label-free detection ofbio/chemical-molecules at single-molecule (or atomic) resolution for futureapplications such as the early diagnostics of diseases such as cancer, but alsofor their unprecedented ability to detect physical quantities such as molecularweight, elastic stiffness, surface stress, and surface elastic stiffness foradsorbed molecules on the surface. Most experimental works on resonator-basedmolecular detection have been based on the principle that molecular adsorptiononto a resonator surface increases the effective mass, and consequentlydecreases the resonant frequencies of the nanomechanical resonator. However,this principle is insufficient to provide fundamental insights intoresonator-based molecular detection at the nanoscale; this is due to recentlyproposed novel nanoscale detection principles including various effects such assurface effects, nonlinear oscillations, coupled resonance, and stiffnesseffects. Therefore, our objective in this review is to overview the currentattempts to understand the underlying mechanisms in nanoresonator-baseddetection using physical models coupled to computational simulations and/orexperiments. Specifically, we will focus on issues of special relevance to thedynamic behavior of nanoresonators and their applications inbiological/chemical detection. We additionally provide extensive discussionregarding potentially fruitful future research directions coupling experimentsand simulations in order to develop a fundamental understanding of the basicphysical principles that govern NEMS and NEMS-based sensing applications.
机译:纳米技术的最新进展催生了诸如纳米机械谐振器之类的纳米机电系统(NEMS)的发展,近来受到了科学界的极大关注,这不仅是因为它们具有无标记检测生物/化学的能力。 -单分子(或原子)分辨率的分子,可用于未来应用,例如癌症等疾病的早期诊断,还具有前所未有的检测物理量(如分子量,弹性刚度,表面应力和表面弹性刚度)的能力,表面。大多数基于共振器的分子检测的实验工作都是基于这样的原理,即分子吸附在共振器表面上会增加有效质量,从而降低纳米机械共振器的共振频率。然而,该原理不足以提供对基于共振器的纳米分子检测的基础见解。这是由于最近提出的新颖的纳米级检测原理,包括各种效应,例如表面效应,非线性振荡,耦合共振和刚度效应。因此,我们在这篇综述中的目的是概述当前尝试使用耦合到计算模拟和/或实验的物理模型来理解基于纳米谐振器的检测的潜在机制。具体来说,我们将关注与纳米谐振器的动态行为及其在生物学/化学检测中的应用特别相关的问题。此外,我们还将就潜在的富有成果的未来研究方向(结合实验和模拟)进行广泛讨论,以便对控制NEMS和基于NEMS的传感应用的基本物理原理有基本的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号